M.Tech. Program from Department of Mechanical Engineering M. Tech. in Advanced Manufacturing Technology <u>Semester wise detailed syllabus</u>

Sl. No.	Subject Code	SEMESTER I	L	Т	Р	С
1.	HS5111	Technical Writing and Soft Skill	1	2	2	4
2.	ME5101	Advanced Engineering Mathematics	3	1	0	4
3.	ME5103	Finite Element Analysis	3	0	0	3
4.	ME5108	Deformation-based Manufacturing	3	0	0	3
5.	ME5109	Manufacturing Lab - I	0	0	3	1.5
6.	ME61XX	DE-I	3	0	0	3
7.	ME61XX	DE-II	3	0	0	3
8.	XX61PQ	IDE	3	0	0	3
	TOTAL		19	3	5	24.5

Course Number	ME5101	
Course Credit	L-T-P-C: 3-1-0-4	
Course Title	Advanced Engineering Mathematics	
Learning Mode	Hybrid	
Learning	Complies with PLOs 1-5.	
Objectives	• This course aims to train the students with the basic and advanced	
	mathematical tools required to solve engineering problems.	
	• Showcase the utility of mathematics towards the analysis of real-world	
	engineering problems.	
Course	This course is designed to fulfil the need for basic and advanced mathematics	
Description	concepts often used in real-life engineering problems.	
	Prerequisite: NIL	
Course Outline	Linear Algebra: Matrix algebra; basis, dimension and fundamental subspaces;	
	solvability of $AX = b$ by direct Methods; orthogonality and QR transformation;	
	decomposition Equiper series Equiper Transformation EET	
	Vector Algebra & Calculus: Basic vector algebra: curves: grad div curl: line	
	surface and volume integral Green's theorem Stokes's theorem Gauss-	
	divergence theorem	
	Differential Equations: ODE: homogeneous and non-homogeneous equations.	
	Wronskian, Laplace transform, series solutions, Frobenius method, Sturm-	
	Liouville problems; PDE: separation of variables and solution by Fourier	
	Series and Transformations, PDE with variable coefficient.	
	Numerical Technique: Numerical integration and differentiation; Methods for	
	solution of Initial Value Problems, finite difference methods for ODE and	
	PDE; iterative methods: Jacobi, Gauss-Siedel, and successive over-relaxation.	
	Complex Number Theory: Analytic function; Cauchy's integral theorem.	
	Statistical Methods: Descriptive statistics and data analysis, correlation and	
. .	regression, probability distribution.	
Learning	• This course would enable the students to solve the mathematical	
Outcome	governing equations of engineering problems.	
	• The students would be able to realise the connection of Mathematics	
	with Physics and Engineering.	
Assessment	Mid Semester Examination, End Semester examination, Class test & quiz	
Method	Assignment, Class Performance and Viva	

Suggested Readings:

Text Books:

- 1. H. Kreyszig, "Advanced Engineering Mathematics", Wiley, (2006).
- 2. Gilbert Strang, "Linear Algebra and Its Applications", 4th edition, Thomson Brooks/Cole, India (2006).
- 3. J. W. Brown and R. V. Churchill, "Complex Variables and Applications", McGraw-Hill Companies, Inc., New York (2004).
- 4. J. W. Brown and R. V. Churchill, "Fourier Series and Boundary Value Problems", McGraw-Hill Companies, Inc., New York (2009).
- 5. G. F. Simmons, "Differential Equations with Applications and Historical Notes", Tata McGraw-Hill Edition, India (2003).
- 6. S. L. Ross, "Differential Equations" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 7. K. S. Rao, "Introduction to Partial Differential Equations", PHI Learning Pvt. Ltd (2005).
- 8. R. Courant and F. John, "Introduction to Calculus and Analysis, Volume I and II", Springer-Verlag, New York, Inc. (1989).

- 9. K. Atkinson and W. Han, "Elementary Numerical Analysis" 3rd edition, John Wiley & Sons, Inc., India (2004).
- 10. R. A. Johnson and G. K. Bhattacharya, "Statistics, Principles and Methods", Wiley (2008).
- 11. Michael D Greenberg, "Advanced Engineering Mathematics", 2nd Edition, Pearson (1998).
- 12. R.K. Jain and S. R. K. Iyengar, "Advanced Engineering Mathematics" 4th Edition, Narosa; 1st Edition (2002).

Course Number	ME5103
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Finite Element Analysis
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1-5
Objectives	This course aims to provide the mathematical concepts and detailed
	algorithm of finite element method and its applications in wide range of
	engineering problems.
Course	This course on FEM discusses all the important topics starting from
Description	fundamentals and mathematical modeling of boundary value problems,
	dimensional domaina. Formulations for different alement such as
	constant strain triangles parametric elements and numerical integration
	beams and frames linear static analysis and Figenvalue problems in one
	and two-dimensional domains. Formulations for different elements such
	as constant strain triangles, isoparametric elements and numerical
	integration, beams and frames, linear static analysis, Dynamic analysis,
	Thermal analysis, Buckling analysis, scalar field problems, pre-
	processing and post processing
Course Outline	Basic Concepts: Introduction, weak formulations, variational
	formulations, weighted residual method, Rayleigh-Ritz and Galerkin's
	method.
	One Dimensional Problems : Second-order differential equations in one
	dimension, Basis steps, discretization, assembly, local and global
	stiffness matrix and its properties, boundary conditions, multipoint
	constraints, applications to: solid mechanics heat transfer and fluid
	mechanics, Electromagnetic problems, axisymmetric problems
	Trusses, Beams and Frames: Plane truss, local and global coordinate
	systems, stress calculations, temperature effect on truss members, Euler
	Bernoulli beam element, C^0 and C^1 elements, Hermite cubic spline
	functions, frame element, Numerical examples, Case Studies.
	Eigen Value and Time dependent problems: Formulation, FEM
	models, semidiscrete FEM models, method and Newmark scheme,
	Applications, problems, convergence and accuracy, Numerical examples
	Scalar Field Problems: Single variables in 2-D, heat transfer, potential
	flow problems, Electromagnetic, impositions of BCs, Numerical
	examples.
	Convergence and error: Energy and L ₂ norm, accuracy and error,
	stability
	Two Dimensional Problems: Constant strain triangle, isoparametric
	formulation, master elements, higher order elements, serendipity
	elements, hybrid element, quaterpoint element, modelling
	considerations, mesh generation, numerical integration, reduced
	integration, computer implementation: heat transfer in thin fins, 2D plane
	stress/plain strain.
	Modelling considerations: Element Geometries, Mesh Generation,
	Load representation, Discussion on Plane stress, plane strain, plate,
	membrane, Thin Shell elements

	Post Processing Techniques:Viewing of results, Average and unaverage stress, Interpretation of results.Limitations with FEM:Introduction of Meshfree Methods, XFEM,
	Phase Filed Modelling, Application
Learning Outcome	 Ability to mathematically formulate and <i>solve</i> Multiphysics problem: Solid, Thermal, Fluid, etc. Analytical ability to interpreter the results involving linear static analysis, Dynamic analysis, Thermal analysis, Buckling analysis etc. Understanding and working of FEA commercial tools ANSYS/ABAQUES/COMSOL
Assessment	Class tests, quiz, Project (By using commercial software/developing own
Method	FEA code), Mid semester and End semester Examination.
Suggested Readings:	

Text Book:

[1] Reddy, J.N., "An Introduction to Finite Element Methods", 3rd Ed., Tata McGraw-Hill. 2005.

Reference Books:

- [2] Zienkiewicz, O. C. "The Finite Element Method, 3rd Edition, Tata McGraw-Hill. 2002.
- [3] Cook, K.D., Malkus, D.S. and Plesha, M.E., "Concept and Applications of Finite Element Analysis", 3th Ed., John Wiley and Sons. 1989.
- [4] Rao, S.S., "The Finite Element Method in Engineering", 4th Ed., Elsevier Science. 2005.
- [5] Reddy, J.N. and Gartling, D.K "The Finite Element Method in Heat Transfer and Fluid Dynamics", 2rd Ed., CRC Press. 2001.
- [6] Fish, J. and Belytschko, T., "A First Course in Finite Elements", 1st Ed., John Wiley and Sons. 2007.
- [7] Chaskalovic, J., "Finite Element Methods for Engineering Sciences", 1st Ed., Springer. 2008.
- [8] Bathe, K. J., "Finite Element Procedures", 1st Ed., Cambridge Press

Course Number	ME5108
Course Credit	L-T-P-C : 3-0-0-3
Course Title	Deformation-based Manufacturing
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1, 2, 4 and 5
Objectives	After attending the class, the students will be able to understand
	1. Plastic deformation-based manufacturing processes: cutting and
	forming
	2. Fundamental Mechanics in orthogonal and oblique cutting, including
	analysis of cutting temperature and its effect on surface roughness
	5. The geometry and mechanics of single and multipoint cutting tool
	4. Advanced machining, including hard machining, ingli-speed
	cryogenic fluids
	5. The use of cutting tool materials and various cutting fluids in cutting
	and forming
	6. The fundamental aspects of material materials deformation process
	7. Analysis of various bulk material forming processes using approaches
	like slab method, upper and lower bound, slip line field
	8. Analysis of sheet metal forming processes
Course	The course will provide a fundamental of the metal cutting process including
Description	a thorough understanding of the tool geometry and mechanics of cutting.
	Additionally, this course is designed to fulfill the basic concepts of material
	yielding and plastic deformation, and analysis of various bulk and sheet metal
	forming operations.
	Prerequisite: NIL
Course Outline	Module 1: Single and multipoint tool geometry, Orthogonal and oblique
	cutting mechanics, Thermal aspects in machining, Tribology in metal cutting,
	Cutting tool materials and tool life, Surface roughness in machining, Recent
	advances in machining: hard turning, high seed machining, diamond turning,
	machining of advanced materials, machining with minimum quantity cutting
	fluids and cryogenic fluids; Mechanics of drilling, milling, grinding and
	broaching Modula 2. Strass strain relations in clostic and plastic deformations. Viold
	criteria for ductile materials: Analysis of bulk metal forming processes using
	Slab method Upper and lower bound methods. Slip line field theory: Effects
	of temperature and strain rate in metal forming. Friction and lubrication in
	metal forming, Sheet metal forming processes, Forming limit diagram,
	anisotropy in sheet metal forming.
Learning	The course training enables with
Outcome	(a) Understanding of fundamental mechanics of cutting and forming
	processes
	(b) Analysis of various cutting and forming processes using commonly used
Assagement	Analytical methods Mid Semaster Examination (25%) End Semaster examination (50%) Class
Method	test & quiz (15%) Assignment (10%)
Suggested Reading	S:
	,
Text Books:	

[1] M. C. Shaw, Metal Cutting, Tata McGraw Hill, New Delhi, 2004.

- [2] William F. Hosford, Robert M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press
- [3] G. W. Rowe, Principles of Industrial Metal working processes, CBS publishers and Distributors
- [4] A. Ghosh and A. K. Malik, Manufacturing Science, East West Press, 2010.

Reference book

- [1] G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, CRC-Taylor and Francis, 2006.
- [2] P. N. Rao, Manufacturing Technology: Foundry, Forming and Welding, Volume 2, Tata McGraw Hill Education Private Limited (2018)
- [3] P. H. Black, Metal Cutting Theory, McGraw Hill, 1961.
- [4] G. K. Lal, Introduction to Machining Science, New Age International Publishers, 2007.
- [5] R.H Wagoner, Metal Forming Analysis, Cambridge University Press
- [6] J. Chakrabarty, Theory of Plasticity, McGraw Hill, 1998.
- [7] Dieter, Mechanical Metallurgy, McGraw Hill. Inc

Course Number	ME5109	
Course Credit	L-T-P-C : 0-0-3-1.5	
Course Title	Manufacturing Lab-I	
Learning Mode	Laboratory experiments	
Learning	Complies with PLOs 1 and 5	
Objectives	This course aims to understand the fundamentals of metal cutting and metal	
	forming analysis with hands-on training on several experimental setups,	
	including the fabrication of single and multi-point cutting tool	
Course	This course will provide hands-on training on several aspects of metal cutting	
Description	analysis, starting from the fabrication of the cutting tool, understanding the	
	chip removal mechanism, cutting mechanics, cutting temperature, and life.	
	Additionally, this course will provide hands-on training on finding out the	
	working load of various bulk deformation processes and sneet forming	
Course Outline	Fabrication of single point outting tool, re sharpening of twist drill, outting	
Course Outime	force measurement using DAO and Labyiew measurement of cutting	
	temperature using DAO and Labyiew Tool life Extrusion rolling forging	
	load estimation deep drawing analysis forming limit diagram blanking and	
	piercing operation.	
Learning	The students will be acquiring knowledge of handling sophisticated	
Outcome	instruments and equipment related to deformation-based manufacturing	
	processes including metal cutting and metal forming. They will also acquire	
	knowledge on the phenomena pertaining to the deformation-based	
	manufacturing processes	
Assessment	Experiment (20%), Report (20%), Viva (60%)	
Method	r · · · · · · · · · · · · · · · · · · ·	
Suggested Keadings:		

Texts Books:

- [1] Bhattacharyya, A., Metal cutting: theory and practice, New Central Book, Kolkata, New Edition
- [2] G. W. Rowe, Principles of Industrial Metalworking processes, CBS publishers and Distributors, New Edition.

Department Elective - I						
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6102	Computational Fluid Dynamics	3	0	0	3
2.	ME6106	Mobile Robotics	3	0	0	3
3.	ME6107	Digital Manufacturing and Industry 4.0	3	0	0	3
4.	ME6108	Wear & Lubrication of Machine Components	3	0	0	3

Course Number	ME6102		
Course Credit	L-T-P-C : 3-0-0-3		
Course Title	Computational Fluid Dynamics		
Learning Mode	Classroom Lecture/Hybrid		
Learning Objectives	Complies with PLOs 1, 2 and 5		
	This course aims to lay the essential foundations of computational fluid dynamics and enable; (a) understanding of the governing equations of fluid dynamics and their classification, (b) understanding of different discretization methods to solve the governing equations numerically, (c) understanding of different types of grids involved in CFD, (d) understanding of popular CFD algorithms for solving incompressible flows.		
Course Description	This course is designed to fulfil the basic concepts of computational fluid dynamics. The course first discusses the general background required for understanding the various numerical methods or discretization techniques involved in CFD. It is followed by a detailed understanding of the two of the popular discretization methods – Finite Difference Method (FDM) and Finite Volume Method (FVM). The course then concludes by proving an overview of other popular CFD methods.		
	Prerequisite: Undergraduate Fluid Mechanics and Heat Transfer course		
Course Outline	Concept of Computational Fluid Dynamics: Different techniques of solving fluid dynamics problems, their merits and demerits, governing equations of fluid dynamics and boundary conditions, classification of partial differential equations and their physical behavior, Navier-Stokes equations for Newtonian fluid flow, computational fluid dynamics (CFD) techniques, different steps in CFD techniques, criteria and essentialities of good CFD techniques. Finite Difference Method (FDM): Application of FDM to model problems, steady and unsteady problems, implicit and explicit approaches, errors and stability analysis, direct and iterative solvers. Finite Volume Method (FVM): FVM for diffusion, convection- diffusion problem, different discretization schemes, FVM for unsteady problems. Prediction of Viscous Flows: Pressure Poisson and pressure correction methods for solving Navier- Stokes equation, SIMPLE family FVM for solving Navier-Stokes equation, modelling turbulence. CFD for Complex Geometry: Structured and unstructured, uniform and non- uniform grids, different techniques of grid generations, curvilinear grid and transformed equations. Lattice Boltzman and Molecular Dynamics: Boltzman equation, Lattice Boltzman equation, Lattice Boltzman methods for turbulence and multiphase flows, Molecular Dynamics algorithms.		
Learning Outcome	 After attending this course, the following outcomes are expected: 1. Ability to classify the partial differential equations involved in fluid mechanics and heat flow and understanding of their physical behaviour. 		

	2. Ability to write CFD codes for the various algorithms covered in
	this course.
	3. Understanding of discretization approach required for the
	unstructured grids.
Assessment	Mid Semester Examination, End Semester examination, Viva, Written
Method	and Coding Assignments
Suggested Reading	js:
Text Books:	
1. J. D. Ar	derson, "Computational Fluid Dynamics", McGraw-Hill Inc. (New
Edition).	
2. S. V. Pata	ankar, "Numerical Heat Transfer and Fluid Flow", Hemisphere Pub.
(New Edi	ition)
3. A. Sharr	na, "Introduction to Computational Fluid Dynamics Development,
Applicati	on and Analysis", Ane Books, 1st edition 2016
4. K. Mura	lidhar, and T. Sundarajan, "Computational Fluid Flow and Heat
Transfer"	', Narosa (New Edition)
5. D. A. A	nderson, J. C. Tannehill and R. H. Pletcher, "Computational Fluid
Mechanic	cs And Heat Transfer", Hemisphere Pub. (New Edition)
6. M. Peric	and J. H. Ferziger, "Computational Methods for Fluid Dynamics",
Springer	(New Edition).
7. H. K. V	resteeg and W. Malalaskera, "An Introduction to Computational
Fluid Dy	namics", Dorling Kindersley (India) Pvt. Ltd. (New Edition).
8. C. Hir	sch, "Numerical Computation of Internal and External
Flows", H	ButterworthHeinemann, (New Edition).
9. J. M. Jail	e, "Molecular Dynamics Simulation: Elementary Methods", Willey
Professio	nal, (New Edition).
10. A. A. Mo	hamad, "Lattice Boltzman Method: Fundamentals and Engineering
Applica	ations with Computer Codes, Springer (New Edition).

Course Number	ME6106	
Course Credit L-T-P-Cr : 3-0-0-3		
Course Title	Mobile Robotics	
Learning Mode	Classroom Lecture	
Learning	Complies with PLOs 3, 4 and 5	
Objectives	• This course will present various aspects of design, fabrication,	
	motion planning, and control of intelligent mobile robotic systems.	
	• This course presents computational aspects and practical	
	implementation issues and thereby leads to a well rounded training.	
Course	This course is designed to introduce students to the concepts of Mobile	
Description	Robotics. The course will provide theoretical background as well as expose	
	the students to practical aspects of Mobile Robotics.	
	I I I I I I I I I I I I I I I I I I I	
	Prerequisite: Engineering Mathematics, Linear Algebra	
Course Outline	Robot locomotion: Types of locomotion, hopping robots, legged robots,	
	wheeled robots, stability, manoeuvrability, controllability	
	Mobile robot kinematics and dynamics: Forward and inverse kinematics,	
	holonomic and nonholonomic constraints, kinematic models of simple car	
	and legged robots, dynamics simulation of mobile robots	
	Perception: Proprioceptive/Exteroceptive and passive/active sensors,	
	performance measures of sensors, sensors for mobile robots like global	
	positioning system (GPS), Doppler effect-based sensors, vision based	
	sensors, uncertainty in sensing, filtering	
	Localization: Odometric position estimation, belief representation,	
	probabilistic mapping, Markov localization, Bayesian localization, Kalman	
	localization, positioning beacon systems	
	Introduction to planning and navigation: path planning algorithms based	
	on A-star, probabilistic roadmaps (PRM), Markov Decision Processes	
T '	(MDP), and stochastic dynamic programming (SDP).	
Learning	After completing this course, the students will be able to design and	
Outcome	tabricate a mobile robotic platform and program it to apply learned	
A	theoretical concepts in practice.	
Assessment	Mid Semester Examination, End Semester examination, Class test & quiz,	
Suggested Deadin	Assignment with simulation and hardware building exercises.	
Suggested Readin	gs: Roalest	
[1] D Siggwort	JUOKS: I. D. Nourhalthah "Introduction to Autonomous Mahila Pahata" The MIT	
Press 2011		
[2] Peter Corke Robotics Vision and Control Fundamental Algorithms in MATI		
Springer Tracts in Advanced Robotics, 2011		
[3] S. M. LaValle, "Planning Algorithms". Cambridge University Press. 2006. (A)		
online http://planning.cs.ujuc.edu/)		
[4] Thrun, S. B	urgard, W., and Fox, D., Probabilistic Robotics, MIT Press, Cambridge, MA	
2005.		
[5] Melgar, E. F	R., Diez, C. C., Arduino and Kinect Projects: Design, Build, Blow Their Minds.	
2012.		

Course Number	ME6107		
Course Credit	L-T-P-Cr : 3-0-0-3		
Course Title	Digital Manufacturing and Industry 4.0		
Learning Mode	Classroom Lecture		
Learning	Complies with PLO 1-5		
Objectives			
	• This course will present various aspects of digital manufacture		
	systems and industry 4.0 with smart and connected business		
	perspective.		
	• This course presents data analytics for digital manufacturing and		
	practical implementation issues for cyber physical systems and		
	thereby leads to a well-rounded training.		
	• This course will also give theoretical and practical knowledge on		
	unmanned aerial vehicle or drone technology, automatic guided		
0	venicles and collaborative robotics essential for industry 4.0		
Course	I his course is designed to discuss t various aspects of digital manufacture systems and industry 4.0 with smart and connected business parametrize. The		
Description	systems and industry 4.0 with smart and connected business perspective. The		
	This course will also give theoretical and practical knowledge on unmanned		
	aerial vehicle or drone technology automatic guided vehicles and		
	collaborative robotics essential for industry 4.0		
	Prerequisite: nil		
Course Outline	Digital Manufacturing: theory and industrial applications; Project planning		
	and project management with digital tools; Digital configuration and		
	architecture; Digital manufacturing system modelling, simulation and		
	analysis		
	Industry 4.0: Globalization and emerging issues, the fourth revolution, LEAN		
	production systems, smart and connected business perspective, smart		
	factories; Cyber Physical Systems and next generation sensors; Collaborative		
	platform and product lifecycle management; Augmented Reality and Virtual		
	Reality; Machine Learning and Artificial Intelligence in Manufacturing;		
	Industrial Sensing & Actuation; Industrial Internet Systems		
	Automation and Robotic solution under the unifications of Humanned April Vahiolas (HAVs) Autonomous Guided		
	Vehicles (AGV): Understanding the application scenarios of UAVs and		
	AGVs for manufacturing. Key components of UAV and AGV - Sensor &		
	Hardware Understanding of Navigation and Path Planning		
Learning	After completing this course, the students will be able to develop digital twins		
Outcome	of the physical system and program it to apply learned theoretical concepts		
	for implementation of collaborative industry 4.0 platforms in practice.		
Assessment	Mid Semester Examination, End Semester examination, Class tests,		
Method	Assignments		
Suggested Readings:			
Reference Books:			
[1] M.P. Groover, "Automation, Production Systems and Computer Integrated manufacturing			
4th Edition, Pearson Education (2016)			
[2] Hamed Fazio	[2] Hamed Fazioliantabar, Monammad Saidi-Menrabad, "Autonomous Guided Vehicle Mothods and Models for Optimal Bath Planning" Springer 2015		
[3] K Kumar D	7 Vioucis for Optimal Fam Flamming, Springer, 2013.		
Industry 4 0	"CRC Press 2019		
[4] J P Davim, "Manufacturing in Digital Industries: Prospects for Industry 4.0" De Gruvter			
2020	2020		

- [5] P. K. Garg, "Introduction To Unmanned Aerial Vehicles," New Age International Private Limited; First edition, 2020
- [6] S.K., Pal, D. Mishra, A. Pal, S. Dutta, D. Chakravarty, S. Pal, "Digital Twin Fundamental Concepts to Applications in Advanced Manufacturing", Springer, 2021

Course Number	ME6108	
Course Credit	L-T-P-Cr : 3-0-0-3	
Course Title	Wear & Lubrication of Machine Components	
Learning Mode	Classroom Lecture	
Learning	Complies with PLOs 3, 4 and 5	
Objectives	Surface failure due to rubbing is a critical problem that affects the life and	
	reliability of modern machinery. The knowledge of surface interaction is	
	interdisciplinary and essential to design for life and reliability and also enable	
	innovation in electromechanical and material engineering design. The course	
	focuses on theories of friction, wear, contact and lubrication, approaches to	
	model basic tribological elements/systems, and methods to simulate	
	tribological processes.	
Course	This course is designed to fulfil understanding of theories of friction, wear,	
Description	contact and lubrication, approaches to model basic tribological	
	elements/systems, and methods to simulate tribological processes.	
	Prerequisite: NIL	
Course Outline	Definition Tribology, Significance for Maintenance and Reliability of	
	Machines, Surface - Roughness, Mechanics of surface/solids contact -	
	Hertzian, Non-Hertzian, Modeling of Rough surface contact, Laws of	
	friction, Mechanisms of friction, Stiction, Stick slip, Surface temperature,	
	Surface energy, micro and nano scale friction. Rolling/Sliding – Heathercote	
	Model, Kalker, Wear – Adhesive Wear, Delamination Wear, Fretting Wear,	
	Abrasive Wear, Erosive Wear, Corrosive Wear, Mild and Severe Oxidative	
	Wear, Wear Mechanism Maps, Stribeck Curve, Reciprocatory, Rotary,	
	Macro-pitting, Micro –pitting, Wear in mechanical/electrical contact,	
	Lubrication – regimes: Boundary Lubrication, Solid Film Lubrication, Mixed	
	Lubrication, Hydrodynamic Lubrication, Hydrostatic Lubrication, EHL,	
	Lubrication in vacuum, Bearings – rolling elements, Journal bearing, Gears,	
	Cams, reciprocatory applications – e.g. sliders, piston-cylinders, IC engines-	
	valve-followers, Lubrications and wear control – coatings and material	
	processing, Lubricants – composition, base fluids, rheology, Additives –	
	boundary layer, Nano additives, I ribological tests – friction, wear, Life tests,	
	Standards, Reciprocatory, Rotary, rolling/sliding –spiral orbit, dry and	
	Lubricated tests, Scaling up subscale tests, component tests, Nano scale	
Loorning	Understanding of surface contact failures and ways to prevent or increase	
Outcome	life of such components	
Outcome	Design of test equipment for testing wear and friction at different scales	
Assassment	Assignments Quiz Mid term and and term ayams	
Method	Assignments, Quiz, who term and end term exams	
Suggested Readings:		
Suggesieu Acaungs. Text Books:		
[1] R.D. Arnell, P.B. Davies, J. Halling, T.L. Whomes, Tribology, principles and design		
applications. Macmillan Education Ltd. First edition 1991		
[2] B. Bhushan, Principles and Applications of Tribology, John Wiley, second edition 2013		
[3] K.L. Johnson, Contact mechanics, Cambridge University Press, 1987.		
[4] A. Cameron, Basic Lubrication Theory, E. Horwood, Halsted Press, 1976.		
[5] I. Hutchings, P. Shipway, Tribology: friction and wear of engineering materials, Butterworth-		
heinemann, 2nd Edition, 2017.		

[6] G, Stachowiak, A.W. Batchelor, Engineering tribology, Butterworth-heinemann, Fourth edition, 2013.

	Department Elective - II					
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6103	Continuum Mechanics	3	0	0	3
2.	ME6110	Biomechanics	3	0	0	3
3.	ME6111	Advanced Manufacturing Processes	3	0	0	3
4.	ME6112	Advanced Mechanical Characterisation of Alloys	3	0	0	3

Course Number	ME6103
Course Credit	L-T-P-C: 3-0-0-3
Course Name	Continuum Mechanics
Pre-requisites	Mechanics of Solids and Mechanics of Fluids
Learning Mode	Classroom lecture

Course Objectives

Complies with PLOs 1, 2 and 4

• This course targets students of solid and fluid mechanics, aiming to familiarize them with the fundamentals of continuum mechanics by enhancing their problem-solving skills for engineering problems like structural mechanics, fluid dynamics and heat transfer.

Course Content

1. Mathematical Preliminaries

Introduction to Tensors: Vectors and second order tensors; Tensor operation; Properties of tensors; Invariants, Eigenvalues and eigenvectors of second order tensors; Tensor fields; Differentiation of tensors; Divergence and Stokes theorem.

2. Kinematics of Deformation

Continuum hypothesis, Material (Lagrangian) and Spatial (Eulerian) descriptions of motion, Displacement field, Deformation gradient, Stretch ratios, Polar decomposition of deformation gradient, Velocity gradient, Rate of deformation, Vorticity, Length, area and volume elements in deformed configuration; Material and spatial time derivatives - velocity and acceleration, Cauchy stress tensor, state of stress, concept of first and second Piola-Kirchoff stress tensors.

3. Fundamental Laws in Continuum Mechanics:

Material derivatives of Line, Surface and Volume Integrals, Conservation of mass, continuity equation, Conservation of linear and angular momentum, Conservation of energy; Continuum Thermodynamics: Basic laws of thermodynamics; Energy equation; Entropy; Clausius-Duhem inequality.

4. Constitutive Relations and Material Models:

Constitutive Assumptions; Ideal Fluids; Elastic Fluids, Hyperelastic Material; Notion of Isotropy; Isothermal Elasticity - Thermodynamic Restrictions, Material Frame Indifference, Material Symmetry; Hooke's law, Stokes problem, Newtonian and Non-Newtonian fluids.

Learning Outcomes:

- The students will understand the various theoretical elements of continuum mechanics, and how these elements apply to solids and fluids.
- The students will be able to derive and apply the equations of continuum mechanics in the following areas: stress and strain analysis, deformation, work and energy, theory of elasticity, viscoelasticity, theory of plasticity, fluid mechanics, and the basis for constitutive equations.
- The students will be able to use continuum theory descriptions in their research work. Furthermore, it will also be helpful for them to understand research or scientific articles with continuum formulations.

Assessment Method

Mid semester examination, End semester examination, Class test/Quiz, Assignments

Reference Books

- 1. Mase, G. T., and Mase, G. E., Continuum Mechanics for Engineers, CRC Press, 2nd Edition, 1999.
- 2. Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1969.

- 3. Rudnicki, J. W., Fundamentals of Continuum Mechanics, John Wiley & Sons, 2015.
- 4. Lai, W. M., Rubin, D., and Krempl, E., Introduction to Continuum Mechanics, Butterworth-Heinemann, 4th edition, 2015.
- 5. Reddy, J.N., An introduction to continuum mechanics, Cambridge University Press, 2013.
- 6. Jog, C.S., Foundations and applications of mechanics: Volume I: Continuum mechanics, Narosa Publishing House, 2007.

Course Number	ME6110
Course Credit	L-T-P-Cr: 3-0-0-3
Course Title	Biomechanics
Learning Mode	Classroom Lecture
Learning Objectives	Complies with PLOs 4 and 5
	 Recognize different forces and couples acting on a Biological systems. Should be able to unify the biological system as a Continuum and demarcate the different elements of biological system such as bone, tendon, cartilage and smooth muscle cells. Analyze the growth, remodelling and residual stress. Perform the experiment on RBC like system, viscosity measurement blood-like liquid, ECG, blood pressure, pressure distribution of human walk on the foot, determination of residual stress overgrowth. Model some of the biological system through computational technique. Able to identify a few of instrumentation technique like ECG, EEG, blood flow, respiratory systems Should be able to mathematically analyse a simple injury of biological system from impact and able to perform the preventive design from the first principle.
Course Description	This course is designed to fulfil the requirement of designing biological systems from the engineering perspective by imparting the some knowledge of biological system through analytical way.
	Prerequisite: NIL
Course Outline	Introduction to Biological System Cell, Tissues and Connective Tissues and their Phenomenological Models: Bone, Tendon, Cartilage, Smooth Muscle cells, Musculo-Skeletal system as a tensegrity structure Gait Analysis: Locomotion and Control Modeling of Humanoid Robots Physiology and mechanical properties of muscles- Viscoelastic model of muscle Tentanization pulse in muscle fibers Physiology and mechanical properties of bones- Bones as bidirectional fibers-nets and its stress response Circulation system Composition and rheological properties of blood Construction of RBC Composition of Artery and Venus walls Operation of heart as a pump and electrical potential Neural system and control Central nervous system Auxiliary nervous system

	Experiment on Biological system-
	Experiment on RBC like system, viscocity measurement blood-like liquid,
	ECG, blood pressure, pressure distribution of human walk on the foot
	Growth, Remodeling and Residual Stresses
	Mathematical model of growth
	Mathematical model of tumor
	Remodeling of biological tissues like skin, artery- wrinkle of skin, ageing
	of aftery Madaling of Desidual stress
	Modeling of Residual stress
	Experiment on Biological system-
	Determination of residual stress in artery-like tissue
	Determination of ageing affect on arterial tissue
	Instrumentation Technique in Biomechanics
	Measurement of Biopotential – ECG, EMG, ENG,
	Test on Respiratory Mechanism
	Ultrasonic measurement of Blood flow
	Drug Delivery Systems
	Application of Biomechanics
	Sports Biomechanics
	Artificial Limbs and organs
	Occupational Biomechanics- consideration in Machine Control and
	Workplace Design
	Injury Biomechanics – Analysis and optimal design
	Biomaterial
Learning	Following learning outcomes are expected after going through this course.
Outcome	a) Will be able to model a biological system both analytically and
	numerically.
	b) Will be able to apply the knowledge of Electro-Magnetic Interference
	to design different instruments like ECG, EEG and EMG.
	c) Will be able obtain the interpretation of biological system in growth,
	remodelling and residual stresses to predict through model the
	circulation system of human body.
	d) Will be able to identify the different sophisticated instrumentation
	and quantitative way to identify the discourd calls
	e) Will be able to design and develop different biological
	instruments/actuators/device/artificial limbs needed for the society.
Assessment	Mid Semester Examination (30 %). End Semester examination (50%). Class
Method	test & quiz (10%), Assignment (10%)
Suggested Read	lings:
Text Books:	
1. Jay	D. Humphrey and Sherry DeLange "An Introduction to 2004
Bio	mechanics: Solids and Fluids, Analysis and Design", Springer;
	Edition
Z. Kog Hui	man Movement Patterns" Routledge: 2 nd Edition

3.	STEPHEN C. COWIN AND JAY D. HUMPHREY Edt. ,	2000
	"Cardiovascular Soft Tissue Mechanics", Kluwer Academic	
	Publishers	
4.	Walter D. Pilkey, Dmitry V. Balandin, Nikolai N. Bolotnik, "Injury Biomechanics and Control: Optimal Protection from Impact ", 1 st	2009
	Edition., Wiley.	
5.	Don B. Chaffin, Gunnar B. J. Andersson, Bernard J. Martin	1999
	"Occupational Biomechanics", Wiley-Interscience; 3rd Edition	
6.	John G. Webster, "Medical Instrumentation: Application and	1997
	Design", Wiley; 3 rd Edition	

Course Number	ME6111	
Course Credit	L-T-P-Cr: 3-0-0-3	
Course Title	Advanced Manufacturing Processes	
Learning Mode	Classroom Lecture	
Learning	Complies with PLOs 1, 3-5	
Objectives	This course aims to impart the essential fundamental concepts of various	
	advanced machining processes and enable (a) to appraise mechanism of	
	material removal, (b) understand and analyze the process performance, (c)	
	identify the suitability of the processes for various materials and applications.	
Course	This course is designed to fulfil the basic concepts of material removal	
Description	mechanism, fundamental analysis, applications and suitability of various	
	advanced machining processes required for different applications.	
	Prerequisite: NIL	
Course Outline	Advanced Engineering Materials & the limitations of Conventional	
	manufacturing processes; Classification of advanced manufacturing	
	processes; Water jet & abrasive water jet machining; Ultrasonic machining;	
	Electrical discharge machining; Ion Beam, Electron Beam & Laser beam in	
	manufacturing; PVD & CVD; Micro and Nano Manufacturing.	
Learning	The course will enable the students to	
Outcome	(a) analyse the process performance,	
	(b) estimate the amount of material removal, and	
	(c) select the suitable advanced machining process for various materials for	
	different applications.	
Assessment	Mid Semester Examination, End Semester examination, Assignments and	
Method	Quiz	
Suggested Readings:		
Text Books:		
11 A Ghosh and A K Mallik, Manufacturing Science, Affiliated East-West Press Pvt Ltd. 2nd		

- [1] A Ghosh and A K Mallik, Manufacturing Science, Affiliated East-West Press Pvt Ltd, 2nd Edn, 2010.
- [2] P. C. Pandey, H S Shan. Modern Machining Processes, Tata McGraw Hill, New Delhi, 2007.

Reference Books:

- [1] James Brown, Modern Manufacturing Processes, Industrial Press Inc, 1991.
- [2] William M. Steen, Laser Material Processing, 3rd edition, Springer, 2003.
- [3] Mark J. Jackson, Microfabrication and Nanomanufacturing, Taylor & Francis, 2008.
- [4] P. K. Mishra. Nonconventional Machining, Narosa Publishing House, New Delhi, 1997.
- [5] J.A. McGeough, Advanced Methods of Machining, Springer, 2014
- [6] G. F. Benedict, Nontraditional Manufacturing Processes, Marcel Dekker Inc, NY., 1987.

Course Name	Advanced Mechanical Characterisation of Alloys			
Course Number	ME6112			
L-T-P-C	3-0-0-3			
Pre-requisites	Nil			
Learning Mode	Class room lecture			
Course objectives				
Complies with PLOs 3,	4 and 5			
Impart a thorough under	rstanding of the mechanical behaviour of materials under various			
conditions.				
• Teach students how to in	nterpret the results of mechanical tests.			
Apply this knowledge to	o solve real-world engineering problems.			
Course Content				
1. Introduction				
Fundamentals of elastic an	nd plastic deformation			
Yield criteria, von Mises,	Tresca, Hill 48, Hill 1993			
Defects in materials	uing and alig in glassic deformation			
Strengthoning machanian	ning, and sup in plastic deformation			
Ductile and brittle failure	intergranular and transgranular failure. GTN model			
Influence of temperature	strain rate and environment on plastic deformation			
Application of mechanica	al properties in engineering design			
	m properates in engineering westgi			
2. Monotonic Tests				
Tensile, compression, she	ear, and torsion tests			
Bend test and notch tensi	le test			
Macro, micro, and nano h	Macro, micro, and nano hardness tests			
Wear testing				
Hydrogen embrittlement	Hydrogen embrittlement evaluation			
2 E-4				
3. Fatigue	n anala fational high angle fations and size angle fations			
Concept of ondurance lin	w cycle faligue, mgn cycle faligue, and giga cycle faligue			
Basquin and Coffin-Man	son laws strain energy density laws for life prediction			
Cyclic stress-strain curve analysis				
Masing analysis				
Cyclic hardening/softening	ng			
Notch fatigue				
Thermo-mechanical fatig	ue			
Rolling contact fatigue				
Fretting fatigue				
Effect of hydrogen embri	ttlement on fatigue			
Influence of defects and 1	Influence of defects and microstructural inhomogeneity on fatigue			
4 Ernoturo				
Stress concentration factor	or and stress intensity factor			
Griffith theory	and seess intensity fuetor			
Basics of linear elastic an	Basics of linear elastic and elastoplastic fracture mechanics			
Impact toughness and du	ctile to brittle transition			
Fracture toughness and c	Fracture toughness and concepts of K_{1c} and J_{1c} , CTOD, Mode mixity,			
Fatigue Crack Growth Ra	Fatigue Crack Growth Rate (FCGR), and Paris law			
Short crack growth and concept of K _{th}				

5. Creep

Creep and creep crack growth Stress relaxation tests Creep-fatigue interaction

6. High Rate Deformation

Strain rate sensitivity Crash testing Crashworthiness of engineering components

7. Sheet Metal Forming

Concept of planar anisotropy and texture Forming limit diagram, Wrinkling limit, fracture limit curve Hole expansion ratio Bauschinger effect and spring back r-ratio and deep drawing ratio

Learning Outcomes:

By the end of this course, undergraduate students should be able to:

- Demonstrate a comprehensive understanding of various advanced mechanical properties.
- Interpret various mechanical tests
- Apply knowledge of advanced mechanical properties to solve real-world engineering problems and enhance material performance.

Assessment Method

• Quiz, mid and end-semester examinations

Texts and References

Text Books:

- 1. George E. Dieter, Mechanical Metallurgy, McGraw Hill Education, 3rd Edition, 1 July 2017.
- 2. S. Suresh, Fatigue of Materials, Cambridge University Press, 2nd edition, June 2012.
- 3. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 4TH EDN, 2017.
- 4. M.N. Shetty, Dislocation and mechanical behaviour of materials, PHI, 2013.

Reference Books:

- 1. Prashant Kumar, Elements of Fracture Mechanics, McGraw Hill Education, 2017.
- 2. J. Schijve, Fatigue of Structures and Materials, Springer, 2nd ed. 2009.
- 3. Bruno C. De Cooman and Kip O. Findley, Introduction to the Mechanical Behavior of Steel, Association for Iron & Steel Technology, 30 Nov 2017.

Sl. No.	Subject Code	SEMESTER II	L	Т	Р	С
1.	ME5201	Advanced Engineering Software Lab	1	0	4	3
2.	ME5203	Measurement and Instrumentation	3	0	0	3
3.	ME5207	Solidification-based Manufacturing	3	1	0	4
4.	ME5208	Manufacturing Lab - II	0	0	3	1.5
5.	ME62XX	DE-III	3	0	0	3
6.	ME62XX	DE-IV	3	0	0	3
7.	RM6201	Research Methodology	3	1	0	4
8.	IK6201	IKS	3	0	0	3
		TOTAL	19	2	7	24.5

Course	Number	ME5201
Course	Credit	L-T-P-C: 1-0-4-3
Course	Title	Advanced Engineering Software Laboratory
Learnin	ng Mode	Classroom Lectures and Practical
Learnin	ng Objectives	Complies with PLO 5
	6 3	Exposure to industrial software used in Mechanical Engineering
		practices.
Course	Description	This course is designed to make students understand commercial software
	I I	along with the understanding of numerical al techniques.
Course	Outline	CAD/CAM: 2D and 3D geometric transformation. Composite
		Transformation, Projections; Curves: Cubic, Bezier, Splines; Surfaces:
		Quadric, Coons patch, Super Quadric, Bezier, B-Splines. Process
		planning, CL data generation, Automatic CNC code generation.
		FEM : Solid model creation, different types of elements, chunking of
		model, meshing, mesh quality, different kinds of analysis: static, dynamic,
		transient, thermal, electro-magnetic, acoustics, sub- structuring and
		condensation, Error and convergence.
		Non-linear static and dynamic analysis, contact analysis, multi-physics
		problem, rigid body analysis of flexible element.
		CFD: Different types of CFD techniques, various stages of CFD
		techniques (i) pre-processor: governing equations, boundary conditions,
		grid generation, different discretization techniques (ii) processor: solution
		schemes, different solvers (iii) post-processing: analysis of results,
		validation, grid independent studies etc. Developing codes using
		commercial/open source software for solving few problems of laminar
		and turbulent flow with heat transfer applications.
		Engineering software's related to CAD/CAM, FEM, CFD, with both GUI
		and script like languages, are to be used for laboratory assignments.
Learnin	ng Outcome	At the end of the course, students will be able to use the industrial
		software for simulating industrial and research problems related to solid
		and fluid mechanics. A mature understanding of various numerical
		techniques and their advantages and disadvantages will develop with
		respect to the software used in the class.
Assessi	ment Method	Class test & quiz, Assignment, Class Performance and Viva, Practical
		Exam
Sugges	ted Readings:	
1.	D. F. Rogers	s and J. A. Adams, "Mathematical Elements for Computer Graphics",
	McGraw- Hil	I, 1990
2.	M. Groover	and E. Zimmers, "CAD/CAM: Computer-Aided Design and
2	Manufacturin	ig", Pearson Education, 2009.
3.	Saxena and B	3. Sahay, "Computer Aided Engineering Design", Springer, 2007.
4.	J. N. Reddy,	"An Introduction to Finite Element Methods", 3rd Ed., 1 ata McGraw-Hill,
_	2005.	
5.	J. Fish, and I	. Belytschko, "A First Course in Finite Elements", 1st Ed., John Wiley and
	Sons, $200/$.	$(0, \dots, 1) = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 $
6. 7	J. D. Anderso	on, "Computational Fluid Dynamics", McGraw-Hill Inc. (1995).
/.	п. к. verst	beeg and w. Ivialalaskera, "An introduction to Computational Fluid
0		Jorning Kinderstey (India) PVI. Ltd. (2008).
δ.	5. Biringen	and C Chow, An introduction to Computational Fluid Mechanics by
	Example.	

Course Number	ME5203
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Measurement and Instrumentation
Learning Mode	Classroom lecture
Learning	Complies with PLOs 2-4.
Objectives	The course aims to provide a basic understanding of the mechanical
	measurement systems and statistical analysis of experimental data.
Course	The course contains the generalized configuration and functional elements of
Description	measuring systems, static and dynamic characteristics of measuring
	instruments. The course also includes the instrumentation for displacement,
	strain, velocity, force, torque, power, pressure, sound, flow and temperature
	measurement.
Course Outline	Module-1 Basic concepts of measurement, functional elements of instruments,
	classification of measuring instruments, methods of correction for interfering
	and modifying inputs, static characteristics of measuring instruments
	Module-2 Static characteristics of measuring instruments, loading effect and
	impedance matching, statistical analysis, Chi-square test, least square method,
	Curve Fitting, Uncertainty analysis and error propagation
	Module-3 Generalized model of a measuring system, zero and first order
	system, second order system. First order system- ramp response, impulse
	response, frequency response, Second order system- step response, ramp
	response, impulse and frequency response, higher order systems,
	compensation, transducers
	Module-4 Flow measurement (not wire anemometer, PIV systems, corions
	thermography ato) heat flux sensors Optical Methoda Shadayyaranh
	Schilieren and Interferometer
	Modulo 5 Stroin gauges, piezoelectric transducers pressure measurement
	force and torque measurement displacement and acceleration measurement
	Module-6 Sound measurement, thermonhysical properties measurement flow
	visualization air pollution sampling and measurement pollutants-Gas
	Chromatography
Learning	 Students will be able to analyze and behavior and characteristics of
Outcome	various measuring instruments and record data
Outcome	 Students will be able to analyze and interpret the experimental data
	 Students will be able to perform uncertainty analysis in the measured and
	derived quantities
Assessment	Mid Semester Examination End Semester examination Ouiz assignments
Method	seminar
Textbook	Sommer

1. E.O. Doebelin, Measurement Systems: Application and Design.

Reference books

- 2. E.G.R. Eckert and R.G. Goldstein, Measurement Techniques in Heat Transfer.
- 3. T.P. Holeman, Experimental Methods for Engineers.
- 4. H.D. Young, Statistical Treatment of Experimental Data.

Course Number	ME5207
Course Credit	L-T-P-C : 3-1-0-4
Course Title	Solidification-based Manufacturing
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 3, 4 and 5
Objectives	This course aims to impart (a) the fundamental aspects of solidification-
	based manufacturing processes, (b) analysis of various casting, welding, and
	additive manufacturing processes, and (c) to train the students with the
	analytical, practical, and problem-solving skills related to solidification-
	based manufacturing processes.
Course	This course is designed to fulfill the basic concepts of solidification-based
Description	manufacturing processes and analysis of various casting, welding, and
	additive manufacturing processes.
	Prerequisite: NIL
Course Outline	Module 1: Introduction to solidification theory, Diffusion theory, Phase
	diagrams, Nucleation kinetics, Phase Transformation, Growth and Interface
	Stability, Effect of secondary phase precipitation
	Module 2: Overview of different casting processes, Rate of solidification
	for casting processes, Directional solidification and Progressive
	solidification: Solidification with constant casting surface temperature,
	solution with predominant interface resistance, Solutification with
	Time and Chyorinov rule. Solidification shrinkage and linear contraction
	nouring rate and Temperature Padding Use of exothermic materials Chills
	Feeding Aids, etc.
	Tecunig Alus, etc.
	Module 3: Overview of different fusion welding processes Weld
	solidification. Heat transfer in welding processes. Welding solidification
	parameters, Correlation between solidification parameters and weld
	microstructures, control of weld solidification structure, solute redistribution
	during welding solidification, solidification modes and constitutional
	supercooling, solidification and liquation cracking, Hydrogen
	embrittlement, brief overview of NDT
	Module 4: Solidification in powder bed fusion and direct energy deposition
	fusion additive manufacturing technologies, Melt pool dynamics, Non-
	equilibrium solidification, Rapid solidification of multi-component alloys,
	Fusion zone geometries, cooling rates, and solidification parameters, Effect
	of solidification rate on micro-segregation, Solute trapping, case studies
Learning	The course training enables with
Outcome	(a) Fundamental concept of solidification-based manufacturing processes
	(b) Analysis of various casting, welding, and additive manufacturing
A ===== (processes
Assessment	Nild Semester Examination, End Semester examination, Assignments and
	Quiz
Suggested Keading	<u>2</u> 8:

Text Books:

[1] Carl R. Loper, Philip C. Rosenthal, Richard W. Heine, Principal of metal casting,[2] D. J. Hoffman, K. R. Dahle, D. J. Fisher, Welding; Pearson publication, 2017.

[3] Igor Yadroitsev, Ina Yadroitsava, Anton Du Plessis, Eric MacDonald, Fundamentals of Laser Powder Bed Fusion of Metals, Elsevier, 1st Edition, 2021

Ref Books:

- [1] Fundamental of Modem Manufacturing: Materials, Processes and Systems, Mikell P.Groover
- [2] Materials & Processes in Manufacturing, E. P. DeGarmo, J. T. Black and Kohser
- [3] Manufacturing Engineering & Technology, S. Kalpakjian, S.R. Schmid
- [4] A. Ghosh and A. K. Malik, Manufacturing Science, East West Press, 2010.
- [5] P. N. Rao, Manufacturing Technology: Foundry, Forming and Welding, 4e (Volume 1) Tata McGraw Hill Education Private Limited (2013)
- [6] John O. Milewski. 'Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry', Springer, 2017.
- [7] A.C. Davies, The Science and Practice of Welding, Vol-2: The Practice of Welding; Cambridge University Press, 2002.

Course Number	ME5208	
Course Credit	L-T-P-Cr : 0-0-3-1.5	
Course Title	Manufacturing Lab-II	
Learning Mode	Laboratory experiments	
Learning	Complies with PLOs 1 and 5	
Objectives	This course aims to understand the fundamentals of solidification-based	
	manufacturing processes and CAD and CAM of solid components with	
	hands-on training on several experimental setups	
Course	This course will provide hands-on training on solidification-based	
Description	manufacturing processes, including additive manufacturing, robotic welding,	
	casting, and CAD and CAM of solid components using CNC-controlled	
	machining.	
Course Outline	Dimensional analysis in sand casting, CAD and CAM of solid components	
	using CNC Milling/ CNC Lathe / EDM / WEDM/ WJM, 3D printing,	
	TIG/MIG welding, Friction Welding, CMM, Remote monitoring and control	
	of Industry 4.0-enabled machine tools.	
Learning	The students will be acquiring knowledge of handling instruments and	
Outcome	equipment related to solidification-based manufacturing processes and CAD	
	and CAM of solid components. They will also acquire knowledge of Industry	
	4.0-enabled machine tools.	
Assessment	Experiment (20%) Report (20%) Viva (60%)	
Method	Experiment (20%), Report (20%), Viva (00%)	
Suggested Readings:		

Texts Books:

[1] M. Groover and E. Zimmers, CAD/CAM: Computer-Aided Design and Manufacturing, Publisher: Pearson Education, 2014.

- [2] G. K. Lal & S. K. Choudhury, Fundamental of Manufacturing, Publisher: Narosa, 2010.
- [3] A. Ghosh and A. K. Malik, Manufacturing Science, Publisher: East West Press, 2010

	Department Elective - III					
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6203	Laser Processing of Materials	3	0	0	3
2.	ME6208	Robot Motion Planning	3	0	0	3
3.	ME6214	Additive Manufacturing of Metals: Theory and Practice	3	0	0	3
4.	ME6215	Computer Numerical Controlled Machine Tools	3	0	0	3

Course Number	ME6203
Course Credit	L-T-P-C: 3-0-0-3
Course Title	Laser Processing of Materials
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 2, 3, 4 and 5
Objectives	This course aims to
	 (a) Understand the fundamentals of laser, laser-material interactions, and physics involved in the laser processing of materials. (b) Understand and analyze various laser machining processes used in manufacturing from macro-scale to micro-scale. (c) Understand and analyze various laser joining processes and surface
	 modification techniques. (d) Understand laser-based 3D manufacturing techniques. (e) Acquainted with recent developments in the field of laser material processing.
Course Description	This course is designed to impart the necessary basic knowledge of laser, laser-material interaction, and a wide range of applications of laser material processing.
Course Outline	Module-I : Laser Fundamentals
	Stimulated Emission, Population Inversion and Amplification; Laser Beam Characteristics: Wavelength, Coherence, Polarization, Mode and Beam Diameter; Industrial Lasers: Solid-Sate Lasers, Gas Lasers, Semiconductor Lasers, Liquid Dye Lasers, etc; Laser Materials Interactions: Absorption of Laser Radiation, Absorption Characteristics of Materials; Thermal Effects - Heating, Melting, Vaporization and Plasma Formation; Time scales.
	Module-II: Laser Machining
	Laser Drilling: Melt Expulsion During Laser Drilling, Analysis of Laser Drilling Process, Laser Drilling Applications. Laser Cutting: Evaporative Laser Cutting, Laser Fusion Cutting, Reactive Laser Cutting, Controlled Fracture Technique; Underwater Cutting. Laser Micromachining: Laser Ablation, Laser-Assisted Chemical Etching; Laser Micromachining Techniques - Direct Writing Technique, Mask Projection Technique. Laser Micromachining Applications.
	Module-III: Laser Fabrication
	Laser Welding: Process Mechanisms - Keyholes and Plasmas, Analysis of Laser Welding Process. Laser Surface Modification: Heat Treatment, Rapid Solidification, Alloying and Cladding, Surface Texturing. Laser Rapid Prototyping: Classification of RP Processes, Laser Based RP Processes, Applications. Mathematical Modeling.
	Module-IV: Special Topics

	Laser Interference Processing; Laser Shock Processing; Biomedical		
	Laser Processes, etc.		
Learning	The course training will enable students to achieve the following		
Outcome	learning objectives:		
	(a) Basics of laser and laser parameters for various laser-based		
	manufacturing processes.		
	(b) The advantages and limitations of laser-based manufacturing		
	processes with physical insights.		
	(c) The effects of various process parameters in laser material processing.		
	(d) Basic foundation knowledge and analytical skills to perform		
	research on laser material processing.		
Assessment	Mid Semester Examination, End Semester Examination,		
Method	Assignments, Quiz, and Seminar.		
Suggested Readin	gs:		
1. W. M. Stee	n and J. Mazumder, Laser Material Processing, 4'th Edition, Springer,		
2010.			
2. N. B. Daho	tre and S P Harimkar, Laser Fabrication and Machining of Materials,		
Springer, 20	008.		
3. E. Kannatey	y-Asibu, Principles of Laser Materials Processing, , Wiley, 2009.		
4. M. von Allı	nen and A. Blatter, Laser-Beam Interactions with Materials, 2'nd		
Edition, Springer, 1998.			
5. John C. Ion, Laser Processing of Engineering Materials, Elsevier, 2005.			
6. J. F. Ready (Editor), LIA Handbook of Laser Materials Processing, Springer,			
2001.			
7 Selected Io	urnal Papers		

Course Number	ME6208	
Course Credit	L-T-P-Cr : 3-0-0-3	
Course Title	Robot Motion Planning	
Pre-requisite	Mobile Robotics	
Learning Mode	Classroom Lecture	
Learning	Complies with PLOs 3 and 4	
Objectives	 This course covers the prominent motion planning algorithms used in the area of mobile robotics. The course will cover various motion planning algorithms and 	
	analyses	
Course	This course introduces students to motion planning algorithm theory and	
Description	implementation which is a crucial enabling technology for imparting higher	
1	degree of autonomy to robots.	
	Prerequisite: ME6106 Mobile Robotics	
Course Outline	 Configuration space and topology: Homeomorphism and diffeomorphism, differential manifolds, connectedness and compactness, parameterization of SO(3) Potential functions: Additive attractive/repulsive potential, distance computation using Brushfire algorithm, local minima problem, wave-front planner, navigation potential functions, sphere-space and star-space, potential function in non-Euclidean spaces Roadmaps: Visibility maps, Generalized Voronoi Diagram, Retract-like Structures, Canny's Roadmap algorithm, opportunistic path planner Cell decomposition: Trapezoidal decomposition, Morse cell decompositions, Visibility-based decompositions for Pursuit/Evasion; Sampling-based algorithms: Probabilistic roadmaps, Expansive spaces trees, Rapidly-Exploring Random Trees, Analysis of PRM. 	
Learning Outcome	After completing this course, the students will be able to implement and analyse robot motion planning algorithms.	
Assessment	Mid Semester Examination. End Semester examination. Class test and ouiz	
Method	Programming Assignments	
Suggested Readings:		
Text Book.		

 H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston, 2005.

Reference Book:

[1] S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006. (Available online <u>http://planning.cs.uiuc.edu/</u>)

Course Number	ME6214
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Additive Manufacturing of Metals: Theory and Practice
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 3, 4 and 5
Objectives	The course is suitable for UG/PG/Ph.D students. The main objective of the
	course is to make the student familiar with the recent emerging trends in the
	processing and fabrication methods of the metal based products. This course
	is designed to provide a comprehensive overview of the metal based additive
	manufacturing technologies, its current state and applications in various
	industries. Also, the numerical modelling approaches, not deformation
	the proposed course
Course	In the proposed course. In the proposed course, (AM) has become
Description	in the present state of the art, the additive manufacturing (AW) has become viable construction tools for fabricating a wide range of structures and
Description	complex geometries. The process consists of printing successive/additive
	layers of materials that are formed layer by layer build up approach. Due to
	its low material wastage, it has undergone a remarkable evolution over the
	past three decades. The technology allows combining various manufacturing
	processes for the production of a bespoke part that applied complex
	geometries, and has captured an increasing attention across various industrial
	sectors. The present course is designed to covers both the fundamental and
	advanced scientific approaches of the additive manufacturing technologies.
	Prerequisite: Knowledge of conventional manufacturing techniques
	(welding, powder metallurgy, etc.)
Course Outline	Recent scope in additive manufacturing technologies, Different additive
	Manufacturing processes and relevant working principle/physics, Computer
	Path planning. Computer Added manufacturing for additive manufacturing
	CNC and robot based additive manufacturing. Hybrid additive manufacturing
	- rolling, friction stir processing, and other severe plastic deformation
	methods, Large scale additive manufacturing, concept of different auxiliary
	energies integrated hybrid additive manufacturing systems, process
	monitoring of additive manufacturing systems, Analytical and numerical
	modeling approaches in fusion based additive manufacturing methods,
	Theory of hot deformation mechanisms in severe plastic deformation
	methods, Materials science in additive manufacturing of metals, Introduction
	to characterization techniques (SEM, EBSD, TEM, Mechanical dynamic
	tests, etc.), Theory of microstructural evolution, correlation between
	microstructure and properties evolution, industrial applications and future
Loorning	scope of additive manufacturing technologies in various industries.
Outcome	To understanding the underlying scientific principles/physics of the different
Outcome	additive manufacturing techniques. From an applicability viewpoint this
	course will help to understand the recent trends in the area of advanced
	manufacturing techniques and its applications across various industrial
	sectors such as biomedical, energy, automotive, and defense where the
	structural and the engineering uses require to achieve high-functionality at
	low cost. The present course is designed to covers both the fundamental and
	advanced scientific approaches used in the present state of the art.

Asses	sment	Mid Semester Examination (30%), End Semester examination (40%), Class	
Metho	od	test & quiz (20 %), Assignment (10 %)	
Suggested Readings:			
Texts	and Referen	ce Books:	
[1]	John O. Mile	wski. 'Additive Manufacturing of Metals: From Fundamental Technology to	
	Rocket Nozz	les, Medical Implants, and Custom Jewelry', Springer, 2017.	
[2]	Brian Baugl	nman, Donald G. Godfrey, Francisco Medina, Keng Hsu, Li Yang,	
	Mamballykal	athil Menon, and Soeren Wiener. 'Additive Manufacturing of Metals: The	
	Technology, Materials, Design and Production', Springer, 2017.		
[3]	David Ian W	impenny, Pulak M. Pandey, L. Jyothish Kumar. 'Advances in 3D Printing &	
	Additive Mar	nufacturing Technologies', Springer, 1 st Edn, 2017.	
[4]	Milan Brandt	(Edited by). Laser Additive Manufacturing- Materials, Design, Technologies,	
	and Applicati	ions, Woodhead Publishing, 2016.	
[5]	Salvatore Br	ischetto, Paolo Maggiore, Carlo Giovanni Ferro (Special Issue Editors).	
	Additive Mar	nufacturing Technologies and Applications, MDPI, 2017.	
[4] [5]	Milan Brandt and Applicati Salvatore Br Additive Mar	(Edited by). Laser Additive Manufacturing- Materials, Design, Technologies ions, Woodhead Publishing, 2016. ischetto, Paolo Maggiore, Carlo Giovanni Ferro (Special Issue Editors nufacturing Technologies and Applications, MDPI, 2017.	

Course Number	ME6215
Course Credit	L-T-P-Cr : 3-0-0-3
Course Title	Computer Numerical Controlled Machine Tools
Learning Mode	Classroom Lecture
Learning	Complies with PLOs 1, 2 and 4
Objectives	
	The objectives of this course, the student should be able:
	• To recognize the importance of CNC technology over conventional
	methods
	• To learn the fundamentals of CNC machine tools control systems
	with the help of binary logic circuits and solved numerical
	• To learn the fundamentals of various electrical and mechanical
	To learn about different work and tool holding devices for CNC
	• To learn about different work and tool holding devices for CNC machines
	• To write CNC part programming for CNC lathe and milling with the help of solved problems
	• To learn the fundamentals of writing CNC program for free form surfaces after acquiring knowledge on the mathematical modeling of few contour surfaces with solved numerical
	• To learn designing of a CNC machine, testing and maintenance
Course	This course is designed to introduce the fundamentals of CNC Machine tools
Description	to get them accustomed with the control systems used, mechanical and
	electrical components, work and job holding devices, CNC part programming
	and design and maintenance of CNC machine tools
	Prerequisite: NIL
Course Outline	Unit I: An overview of CNC
	Historical perspective, Introduction to NC/CNC/DNC and its role in FMS and CIMS, Is CNC suitable for mass production, basic elements of CNC machine tools, Machine axes designation, Advantages and disadvantages of CNC machine tools, Use of CNC technology for non-machining applications, CNC machines for industry 4.0
	Unit II: Classification of CNC machine tools
	Point-to-point control (P-T-P), Continuous control, Open-loop control,
	Closed-loop control, 2 and 3 axes, and 4 and 5 axes CNC machine tools
	Unit III: Mechanical components of CNC machine tools
	Drive units of the carriages in CNC machine tools: Recirculating ball screw,
	Roller screw, Planetary roller screws, Recirculating roller screws
	Unit IV: Electrical and electronics components of CNC machine tools
	motors etc.: Encoders: Working principle of incremental absolute rotary and
	linear encoders: Working principle of position down counter (PDC) and
	decoding logic circuits. Interpolators: linear. circular etc., Digital differential
	analyzer (DDA) hardware-based linear and curvilinear interpolation
	Unit V: Tooling for CNC machine tools
	Tool changing arrangements: manual tool changer, automatic tool changer
	(ATC), tool turrets, tool magazines: chain magazine, circular magazine, and
	box magazine
	Unit VI: Work-holding for CNC machine tools
	Turning center work holding methods, Work holding for machining centers Unit VII: CNC part programming

	Introduction to part programming, advanced programming features and canned cycles, machining of free-form (3D) surfaces: curved surface geometries, cutter path generation for curved surfaces, CNC program generation using CAM software, Remote operation Unit VIII: Design, testing and maintenance of CNC machine tools Design of CNC machine tools for static dynamic and thermal loads. Testing		
	and calibration of CNC machine tools for geometric, kinematic and thermal errors, Maintenance and troubleshooting operation, Online inspection features		
Learning	The student will be able to		
Outcome	 Apply the knowledge of CNC technology taught in this course to develop laboratory scale CNC system Apply the knowledge of part programming to manufacture any intricate surfaces using CNC machine tools 		
Assessment	Mid Semester Examination (25%), End Semester examination (50%), Class		
Method	test & quiz (15%), Assignment and Mini Project (10%)		
Suggested Readi	ngs:		
References:			
[1] CAD/CAM	I: Computer-Aided Design and Manufacturing, MP Groover, PTR Prentice-Hall,		
New Jersey	 1		
[2] CNC mach	[] CNC machining Technology, Graham T. Smith, Springer Verlag, London		
[3] Computer	[3] Computer Numerical Control Machines and Computer Aided Manufacturing,		
Radhakrish	nan, New Academic Science Limited, UK		
[4] Machining	and CNC Technology, Michael Fitzpatrick, McGraw Hill		
[5] Computer	[5] Computer Numerical Control of Machine Tools, G.E Thyer, NewNes, 1991		
[6] CAD/CAN	I Theory and Practice, Ibrahim Zeid and R Sivasubramanian, Tata McGraw Hill,		

[6] CAD/CAM Theory and Practice, Ibrahim Zeid and R Sivasubramanian, Tata McGraw Hill, New Delhi, 2009.

Department Elective - IV						
Sl. No.	Subject Code	Subject	L	Т	Р	С
1.	ME6210	Robotics: Advanced Concepts & Analysis	3	0	0	3
2.	ME6211	Analysis of Welding Processes	3	0	0	3
3.	ME6212	Fracture and Fatigue	3	0	0	3

Course Number	ME6210		
Course Credit	L-T-P-Cr : 3-0-0-3		
Course Title	Robotics: Advanced Concepts and Analysis		
Learning Mode	Classroom Lecture		
Learning	Complies with PLOs 3, 4 and 5		
Objectives	 This course gives various aspects of kinematics, dynamics, motion planning, and control of robotic manipulators This course presents computational aspects, control aspects and practical implementation of multi degree of freedom manipulators for 		
	industrial application		
Course Description	This course is designed to fulfil the basic and advanced concepts of kinematics, dynamics, motion planning, and control of industrial Robotics. The course will provide theoretical background as well as expose the students to practical aspects of Robotic manipulators.		
Course Outline	Introduction to relation brief history, types, classification and usage and the		
	science and technology of robots. Kinematics of robot: direct and inverse kinematics problems and workspace, inverse kinematics solution for the general 6R manipulator, redundant and over-constrained manipulators. Velocity and static analysis of manipulators: Linear and angular velocity, Jacobian of manipulators, singularity, static analysis. Dynamics of manipulators: formulation of equations of motion, recursive dynamics, and generation of symbolic equations of motion by computer simulations of robots using software and commercially available packages. Planning and control: Trajectory planning, position control, force control, hybrid control Industrial and medical robotics: application in manufacturing processes, e.g. casting, welding, painting, machining, heat treatment and nuclear power stations, etc.; medical robots: image guided surgical robots, radiotherapy, cancer treatment, etc. Advanced topics in robotics: Modelling and control of flexible manipulators, wheeled mobile robots, bipeds, etc. Future of robotics.		
Learning Outcome	 After completing this course, the students will be able to design and fabricate a robotic arm for some practical applications Students will able to operate and control a robotic system using the theoretical concepts learned in this course 		
Assessment	Mid Semester Examination, End Semester examination, Class tests,		
Method	Assignments, mini-projects		
Suggested Readings:			
 Reference Books: [1] M. P. Groover, M. Weiss, R. N. Nagel and N. G. Odrey, "Industrial Robotics-Technology, Programming and Applications", McGraw-Hill Book and Company (1986). [2] S. K. Saha, "Introduction to Robotics", Tata McGraw-Hill Publishing Company Ltd. (2008). [3] S. B. Niku, "Introduction to Robotics–Analysis Systems, Applications", Pearson Education (2001). [4] A. Ghosal, Robotics: "Fundamental Concepts and Analysis", Oxford University Press (2008). [5] Pires, "Industrial Robot Programming–Building Application for the Factories of the Future" 			

Springer (2007).

[6] Peters, "Image Guided Interventions – Technology and Applications", Springer (2008).

[7] K. S. Fu, R. C. Gonzalez and C.S.G. Lee, "ROBOTICS: Control, Sensing, Vision and Intelligence", McGraw-Hill (1987).

^[8] J. J. Craig, "Introduction to Robotics: Mechanics and Control", 2nd edition, Addison-Wesley (1989).

Course Number	ME6211		
Course Credit	L-T-P-Cr : 3-0-0-3		
Course Title	Analysis of Welding Processes		
Learning Mode	Classroom Lecture		
Learning	Complies with PLO 3, 4, 5		
Objectives			
	This course aims to impart (a) the fundamental concepts and process details		
	of fusion and non-fusion welding processes, (b) analysis of the processes		
	focusing the role of process parameters, heat generation, heat distribution		
	and metallurgical aspects, (c) weld design and testing aspects of welded		
	joints.		
Course	This course is designed to fulfil the concepts, process behavior, and analysis		
Description	of various fusion and non-fusion welding processes, metallurgical aspects,		
	and quality, testing of welded joints.		
	Prerequisite: Basic course on Manufacturing Processes that covers welding		
	processes or equivalent course		
Course Outline	Fundamentals of fusion welding – different arc welding techniques; welding		
	power source: benavior, characteristics, analysis; Physics of Arc; Heat		
	generation, 2D/5D near now and near transfer analysis, Physics and analysis		
	of some common arc welding processes e.g. SMAW TIG GMAW SAW		
	etc : Concepts of flux activated welding pulsed current welding		
	Review of different non-fusion welding techniques. Analysis of heat		
	generation during friction, friction stir welding techniques; Fundamentals and		
	applications of other non-fusion welding etc.		
	Welding metallurgy: Heat flow, cooling rate and metallurgical		
	transformations, solidification and cracking; Phase transformations-weld		
	CCT diagrams; Welding of steels – Schaffler and Delong diagrams, Weld		
	metallurgy of Non-ferrous alloys.		
	Welding symbols and concepts of joint design; Weld defects; Joint quality		
	assessments by destructive and non-destructive testing.		
Learning	After completing the course, the students will be able to		
Outcome	(a) identify the process characteristics and behavior of fusion, non-fusion		
	welding processes,		
	(b) perform thermal analysis, and appraise the metallurgical changes in		
	welded joints,		
	(c) suitably design for the weld and assess the weld quality.		
Assessment	Mid Semester Examination, End Semester examination, Assignments and		
Suggested Deading			
Tavt Books	55.		
[1] A C Davies The Science and Practice of Welding Vol 2. The Practice of Welding			
Cambridge University Press 2002			
[2] D. I. Hoffman, K. R. Dahle, D. J. Fisher, Welding: Pearson publication 2017			
Reference Books:			
[1] R.W. Messle	r. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy: John		
Wiley & Sons 1999			

- [2] R. Little, Welding and Welding Technology, McGrawHill, 2017.
- [3] S. Kou, Welding Metallurgy, Second Ed., John Wiley & Sons, 2003.
- [4] Fundamentals of Welding, Welding Handbook, Part-I, American Welding Society, 1976.
- [5] Metals and their Weldability, Welding Handbook, Part-4, American Welding Society, 1982.

Course Number	ME6212			
Course Credit	L-T-P-Cr : 3-0-0-3			
Course Title	Fracture & Fatigue			
Learning Mode	Classroom Lecture			
Learning	Complies with PLOs 3, 4 and 5			
Objectives	To provide the analytical and mathematical concepts of fracture mechanics			
	and its applications in wide range of engineering problems.			
Course	This course discusses topics starting from Griffith's theory of brittle failures,			
Description	linear elastic fracture mechanics, frwin's stress intensity factors; Linear			
	intensity factor (SIF) SIF and FRR: First order estimate of plastic zone using			
	Irwin's and Dugdale approach. Elasto-plastic fracture: I-integral and CTOD			
	Mixed mode fracture: Experimental evaluation of Fracture Toughness. J			
	integrals, Crack nucleation and growth, Fatigue crack growth theories,			
	Fatigue life prediction.			
	Prerequisite: Knowledge of solid mechanics or equivalent course			
Course Outline	Introduction: Background; Griffith theory of fracture, energy release rate			
	(ERR), conditions for stable and unstable crack growth, crack arrest			
	Linear elastic fracture mechanics: Stress field at the tip of a crack, solution of stress and displacement field for plane gracks using complex methods in			
	plane elasticity. Stress intensity factor (SIE) for plane and penny shaped			
	cracks. Embedded Cracks. Equivalence of SIF and ERR, fracture toughness.			
	Elasto-plastic fracture mechanics : First order estimate of crack tip plastic			
	zone using Irwin's and Dugdle's approach, Plastic zone for plane stress and			
	plane strain situation and effect on fracture toughness, Review of small strain			
	plasticity, Crack tip fields in an elasto-plastic material (Discussion on HRR			
	fields) J-integral as a fracture parameter and crack tip opening displacement.			
	Mixed mode fracture: Prediction of crack path and critical condition for			
	crack extension under mixed mode loading using Maximum tensile stress,			
	Functional measurement of SIF and fracture toughness:			
	Measurement of plain strain fracture toughness (K_{IC}). Measurement of J_{IC} .			
	Measurement of Critical COD.			
	Fatigue crack growth: Mechanism of crack nucleation and growth under			
	cyclic loading, Crack closure, Determination of life of a cracked solid using			
	Paris-Erdogan law and its variants, Variable amplitude cyclic loading.			
Loorning	• Understanding of fundamental concents habing the failure of material			
Outcome	• Understanding of fundamental concepts benind the failure of material and mathematical foundation from mechanics			
Outcome	 Ability to understand how material fails and ability to prevent such 			
	failures.			
	• Laboratory testing procedure of fracture parameters.			
	Ability to predict the remaining life of the specimen/component.			
Assessment	Class tests, quiz, Project (Case Studies), Mid-semester and End semester			
Method	Examination.			
Suggested Readings:				

Text Books:

[1] T.L. Anderson, Fracture mechanics fundamentals and applications; CRC Press: Florida, Fourth Edition, 2017.

Reference Book

- [1] C.T Sun and Z.H Jin, Fracture Mechanics; Elsevier: Oxford, First Edition, 2012.
- [2] Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New Delhi, India, 2009.
- [3] E. E. Gdoutos, Fracture Mechanics- An Introduction, Springer Netherlands, 1990.
- [4] D. Broek, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1986.
- [5] M. Janssen, J. Zuidema and R.J.H Wanhill, Fracture Mechanics, Spon Press, New York, 2005.
- [6] S. Suresh, Fatigue of Materials, Cambridge University Press, UK, 2003.